Impact of laser process parameters in direct energy deposition on microstructure, layer characteristics, and microhardness of TC21 alloy

Author:

Elshaer Ramadan Nagy,Elshazli Ahmed Magdi,Hussein Abdel Hamid Ahmed,Al-Sayed Samar RedaORCID

Abstract

AbstractIn the present study, layers consisting of 40% Stellite-6 and 60% WC were deposited on Ti-6Al-3Mo-2Sn-2Zr-2Nb-1.5Cr-0.1Si (TC21) alloy by means of direct energy deposition (DED) technology aiming to improve the microstructure and microhardness. Five powder feeding rates ranging from 20 to 100 ɡ min−1 were applied using CW fiber-coupled diode laser with 4 kW output power. The deposited layers were analyzed via scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), and X-ray diffractometry (XRD). The results show that WC particles are dispersed in a heterogeneous manner in the deposition zone, especially at the rates 20, 40, and 60 ɡ min−1. In addition, microcracks appeared in the interface zone particularly at 100 ɡ min−1 due to the higher induced residual stresses caused by the difference in the coefficient of thermal expansion between Stellite-6, WC particles, and TC21 substrate alloy. Several complex carbides and intermetallic compounds such as W2C, TiC, Cr7C3, Co3W3C, and Co25Cr25W8C2 were detected in the deposited layers depending on the powder feeding rate. With further increase in the powder feeding rate, the fractions of W2C and the bulk (unmelted) WC particles were increased and that of the TiC particle was reduced correspondingly due to the thermal diffusion. The layer thickness increased from 1.3 to 2.7 mm when the powder feeding rate increased from 40 to 100 ɡ min−1, while the dilution ratio decreased from 23 to 5.3% as a result of the thermal diffusion of the laser energy. The microhardness of the composite was found to be three times higher than that recorded for the TC21 substrate (1020 vs. 340 HV0.05). The results revealed that the best homogeneous microstructure with the highest microhardness was achieved at the powder feeding rate of 100 ɡ min−1 whereas microcracks free layers were accomplished at 40 ɡ min−1.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3