Load capacity of single-lap adhesive joints made of 2024-T3 aluminium alloy sheets after shot peening

Author:

Zielecki WładysławORCID,Trzepieciński TomaszORCID,Bąk ŁukaszORCID,Ozga EwelinaORCID

Abstract

AbstractThe goal of the work reported was to determine the influence of selected shot peening parameters on the deflection of the Almen strip and the load capacity of single-lap adhesive joints made of 2-mm-thick aluminium alloy EN AW-2024-T3. Moreover, the research was aimed at checking the possibility of using the Almen strip deflection indicator to predict the load capacity of adhesive joints after shot peening. The analysis was carried out according to Hartley’s PS/DS-P:Ha3 plan. The input factors were the shot peening parameters: treatment time t (60–180 s), ball diameter dk (0.5–1.5 mm) and compressed air pressure p (0.3–0.5 MPa). It has been proved in this work that shot peening treatment of the outer surface of single-lap adhesive joints can be used to strengthen the joint. The maximum increase in the load capacity of the shot peened joints was 33.4%. It was observed that the load capacity of the joints decreases with an increase in the deflection of the Almen strip (in the assumed area of variability of technological parameters). Moreover, the results obtained indicate that the adoption of too intensive treatment, manifested in high values of deflection of the Almen strip, may weaken single-lap adhesive joints.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3