Design of a contactless powered and piezoelectric-actuated tool for non-resonant low-frequency vibration-assisted machining of brittle-hard materials

Author:

Brier Jens,Bleicher Friedrich

Abstract

AbstractUltrasonic-assisted grinding (UAG) is the state-of-the-art process for machining of brittle-hard materials. In comparison to conventional processes, the main advantages lie in the reduction of tool wear and process forces. Such a vibration system is based on a resonant actuator and a power supply unit generating the alternating current. Both units are interconnected by a contactless energy transfer (CET) system. This system configuration shows one optimal working point at the resonant frequency with maximum amplitude, which is significantly depending on the tool shape. In this work, a piezo-activated tool system is designed to realize non-resonant low-frequency vibrations. Major emphasis is put on the thermal behavior of the piezo drive, particularly on the in-process heating depending on the working frequency. In addition, focus lays on the theoretical and numerical design of the radial operating transducer CET system for a previously set actuator design. As a result, this system configuration offers a fully variable adjustment of the amplitude from under 1 to over 50 μm at frequency range. Outside this range, higher amplitudes can be achieved for short periods to the detriment of the fatigue strength according to FKM.

Funder

TU Wien

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Reference20 articles.

1. Lauwers B (2011) Surface integrity in hybrid machining processes. Procedia Engineering 19:241–251

2. Newman ST, Dhokia VG, Nassehi A, Zhu Z (2013) A review of hybrid manufacturing processes - state of the art and future perspectives. Int J Comput Integr Manuf 26(7):596–615

3. Uhlmann B, Daus NA (2011) Ultraschallunterstütztes Schleifen - Einsatzvorteile durch ein inovatives Schleifverfahren, BMBF

4. Fang F, Kang C, O’Toole L (2020) Advances in rotary ultrasonic-assisted machining. Nanomanufacturing and Metrology 3:1–25

5. Cong W, Wang H, Ning F, Hu Y, Fernando PKSC, Pei YJ (2016) Surface grinding of carbon fiber–reinforced plastic composites using rotary ultrasonic machining: effects of tool variables. Advances in Mechanical Engineering 8(9):1–14

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3