Deep learning–based inline monitoring approach of mold coating thickness for Al-Si alloy permanent mold casting

Author:

Deng FangtianORCID,Rui XingyuORCID,Lu ShuangORCID,Liu Zhang,Sun Haoran,Volk WolframORCID

Abstract

AbstractIn the permanent mold casting process, the distribution of mold coating thickness is a significant variable with respect to the coating’s thermal resistance, as it strongly influences the mechanical properties of cast parts and the thermal erosion of expensive molds. However, efficient online coating thickness measurement is challenging due to the high working temperatures of the molds. To address this, we propose an indirect monitoring concept based on the analysis of the as-cast surface corresponding to the coated area. Our previous research proves linear correlations between the as-cast surface roughness parameter known as arithmetical mean height (Sa) and the coating thickness for various coating materials. Based on these correlations, we can derive the coating thickness from the analysis of the corresponding as-cast surface. In this work, we introduce a method to quickly evaluate the as-cast surface roughness by analyzing optical images with a deep-learning model. We tested six different models due to their high accuracies on ImageNet: Vision Transformer (ViT), Multi-Axis Vision Transformer (MaxViT), EfficientNetV2-S/M, MobileNetV3, Densely Connected Convolutional Networks (DenseNet), and Wide Residual Networks (Wide ResNet). The results show that the Wide ResNet50-2 model achieves the lowest mean absolute error (MAE) value of 1.060 µm and the highest R-squared (R2) value of 0.918, and EfficientNetV2-M reaches the highest prediction accuracy of 98.39% on the test set. The absolute error of the surface roughness prediction remains well within an acceptable tolerance of ca. 2 µm for the top three models. The findings presented in this paper hold significant importance for the development of an affordable and efficient online method to evaluate mold coating thickness. In future work, we plan to enrich the sample dataset to further enhance the stability of prediction accuracy.

Funder

Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie

Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst

Fraunhofer-Institut für Gießerei-, Composite und Verarbeitungstechnik IGCV

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3