Author:
Huo Dehong,Lin Chao,Choong Zi Jie,Pancholi Ketan,Degenaar Patrick
Abstract
Abstract
This paper presents an experimental investigation on surface and subsurface characterisation of micro-machined single-crystal silicon with (100) orientation. Full immersion slot milling was conducted using solid cubic boron nitride (CBN) and diamond-coated fine grain tungsten carbide micro-end mills with a uniform tool diameter of 0.5 mm. The micro-machining experiments were carried out on an ultra-precision micro-machining centre. Formal design of experiments (DoE) techniques were applied to design and analysis of the machining process. Surface roughness, edge chipping formation and subsurface residual stress under varying machining conditions were characterised using white light interferometry, SEM and Raman microspectroscopy. Tens of nanometre-level surface roughness can be achieved under the certain machining conditions, and influences of variation of cutting parameters including cutting speeds, feedrate and axial depth of cut on surface roughness were analysed using analysis of variance (ANOVA) method. Raman microspectroscopy studies show that compressive subsurface residual stress and amorphous phase transformation were observed on most of the micro-machined subsurface, which provides evidence of ductile mode cutting. Surface and subsurface characterisation studies show that the primary material removal mode is ductile or partial ductile using lower feedrate for both tools, and diamond-coated tools can produce better surface quality. Silicon brain implants were fabricated with good dimensional accuracy and edge quality using the optimised machining conditions, which demonstrated that micro-milling is an effective process for fabrication of silicon components at a few tens to a few hundreds of micron scale.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献