Author:
Gai Xiaoyu,Cheng Yaonan,Guan Rui,Jin Yingbo,Lu Mengda,Zhou Shilong,Xue Jing
Funder
National Natural Science Foundation of China
Joint Guidance Project of Heilongjiang Provincial Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering
Reference29 articles.
1. Karandikar J (2019) Machine learning classification for tool life modeling using production shop-floor tool wear data. Procedia Manuf 34:446–454
2. Li H, Wang W, Li ZW, Dong LY, Li QZ (2020) A novel approach for predicting tool remaining useful life using limited data. Mech Syst Signal Proc 143:106832
3. Dadgari A, Huo DH, David S (2018) Investigation on tool wear and tool life prediction in micro-milling of Ti6Al4V. Nanotechnol Precision Eng 1(4):218–225
4. Sagar CK, Priyadarshini A, Gupta AK, Mathur D (2020) Experimental investigation of tool wear characteristics and analytical prediction of tool life using a modified tool wear rate model while machining 90 tungsten heavy alloys. Proc Inst Mech Eng Part B-J Eng Manuf 23(1):95–102
5. Karam S, Centobelli P, Addona DMD, Teti R (2016) Online prediction of cutting tool life in turning via cognitive decision making. Procedia CIRP 41(2):269–273