Design, motion-planning, and manufacturing of custom-shaped tools for five-axis super abrasive machining of a turbomachinery blade type component

Author:

Martinez-Aguirre Maialen,Gómez Gaizka,Bo Pengbo,Barton Michael,González-Barrio Haizea,Calleja-Ochoa Amaia,de Lacalle Luis Norberto López

Abstract

AbstractFree-form surfaces generated by non-uniform rational B-splines (NURBS) are evolving to face turbomachinery component requirements, such as turbine blades to enhanced efficiency. Super abrasive machining (SAM) is presented as a potential process for high-added value components using custom-shaped tools to be adapted to any surface. The adaptability and flexibility of these tool concepts are specifically designed to fit these complex surfaces. This paper presents an innovative manufacturing approach for blade type components using a custom-shaped tool designed through an optimization process that simultaneously optimizes both the shape of the tool and its motion. The proposed method with SAM finishing using a custom-shaped tool is compared against a standard tool and traditional machining process. The result obtained on the blade test case shows that the custom-shaped tools need fewer paths, yet produce more accurate surface finish.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3