An investigation on microstructural features and bonding strength of magnesium-based multifunctional laminated composite developed by friction stir additive manufacturing

Author:

Dixit Amit Rai,Srivastava Ashish Kumar,Dwivedi Suryank,Nag Akash,Hloch SergejORCID

Abstract

AbstractRecently, the demand for lightweight multilayered parts in electronics and biomedical fields has been accelerated and shown great interest in understanding the combined effect of multilayered materials. However, these industries are still facing the challenge of developing dissimilar multilayered materials that can be suitable for biomedical applications. In this context, magnesium emerges as a promising biocompatible material used for several biomedical applications. However, the issues related to joining magnesium alloys with other similar materials still need to be solved. Moreover, friction stir additive manufacturing (FSAM) occupies a niche domain for developing or joining biocompatible materials such as magnesium alloys with low weight and high strength. Therefore, the present work highlights the development of a multipurpose three-layered multifunctional laminated composite plate of magnesium-based AZ31B–Zn–Al 1100 through the FSAM route. Microstructural and morphological examinations were carried out by light microscopy and FESEM equipped with EDS analysis and line mapping. Moreover, the grain refinement at the interfaces during the FSAM was also addressed using the electron backscattered diffraction (EBSD) study. Further, investigation on mechanical properties such as tensile test with fractography analysis and microhardness variation at the cross-section of the built-up section has been investigated. Furthermore, the corrosion and tribological analysis was also performed, and a 3D profilometer was used to visualize the corroded and worn-out surfaces. The microstructural results revealed that the average grain size of 6.29 μm at interface AZ31B–Zn and 1.21 μm at interface Zn–Al 1100 occurred, improving the bonding strength and overall properties. The tensile strength has occurred as 171.5 MPa at 15.5% elongation, whereas maximum microhardness is reported as 105 HV at the interface of AZ31B–Zn and 84.6 HV at the interface of Zn–Al 1100. The corrosion rate was calculated as 0.00244 mm/day, and the average coefficients of friction (COF) for both the interfaces, such as AZ31B–Zn and Zn–Al 1100, are 0.309 and 0.212, respectively.

Funder

Technical University of Ostrava

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3