Electron beam weld penetration depth prediction improved by beam characterisation

Author:

Yin Yi,Kennedy Andrew,Mitchell Tim,Sieczkiewicz Norbert,Jefimovs Vitalijs,Tian YingtaoORCID

Abstract

Abstract Predicting the penetration depth during electron beam welding (EBW) is important, but the accuracy of current predictive models is highly varied, depending on the type and number of data used. This paper develops and compares several penetration depth prediction models for EBW and uniquely compares the influence of the number and type of data used, as well as the measurement and modelling methods. Although accelerating voltage, beam current and welding speed data are essential modelling inputs, additional data for beam focal position and beam shape, measured using a novel 4-slit beam probing method, greatly improve the accuracy of predictions for models based on an empirical equation, a second-order regression and an artificial neural network (ANN). Optimised models predict weld depths that deviate, on average, by less than 5% from measured depths, are valid for very broad linear electron beam power density ranges (86–324 J/mm) and are close to the estimated 4% inherent variability in the process and its measurement. Within this linear electron beam power density range, the ANN yields accurate and reliable depth predictions, demanding as few as 36 welding trials, decreasing the number required for models that do not consider beam focal position and shape, for the same targeted accuracy, by more than 60%. Adding large volumes of virtual data generated by less reliable analytical or regression models did not improve the predictive capability for the ANN developed in this study.

Funder

Lancaster University

Lloyd's Register Foundation

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3