Prediction of laser drilled hole geometries from linear cutting operation by way of artificial neural networks

Author:

Baiocco Gabriele,Genna Silvio,Leone Claudio,Ucciardello Nadia

Abstract

AbstractThis paper deals on artificial intelligence (AI) application for the estimation of kerf geometry and hole diameters for laser micro-cutting and laser micro-drilling operations. To this aim laser cutting and laser drilling operation were performed on NIMONIC 263 superalloy sheet, 0.38 mm in nominal thickness, by way of a 100 W fibre laser in modulated wave regime. Linear cuts and holes (by trepanning) were performed fixing the average power at 80 W and changing the pulse duration, the cutting speed, the focus depth and the laser path (the latter only for the drilling operations). Kerf width and the holed diameter, at the upper and downsides, were measured by digital microscopy. Different artificial neural networks (ANNs) were developed and tested to predict the kerf widths and the diameters (at the upper and downside). Two ANNs were addressed to the linear cutting process modelling; also, two further ANNs were developed for micro-drilling on the base of the linear cutting process features. The networks were trained with a subset of data containing the process conditions and the kerf/hole geometry. The ANN test was performed with the remaining data. The results show that ANNs can model the cut and hole geometry as a function of the process parameters. Moreover, the ANN trained with kerf geometry is more efficient. Therefore, a functional correlation between the kerf geometries achievable in the linear cutting process and micro-drilling was assessed.

Funder

Università degli Studi di Roma Tor Vergata

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on the use of microslit for various applications and its fabrication;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-01-28

2. Optimization of Laser Cutting Parameters for PMMA Using Metaheuristic Algorithms;Arabian Journal for Science and Engineering;2024-01-25

3. Real-Time Defect Monitoring of Laser Micro-drilling Using Reflective Light and Machine Learning Models;International Journal of Precision Engineering and Manufacturing;2023-10-24

4. Kerf characteristics during CO2 laser cutting of polymeric materials: Experimental investigation and machine learning-based prediction;Engineering Science and Technology, an International Journal;2023-10

5. Simulation study and parameter optimization of laser TSV using artificial neural networks;Journal of Materials Research and Technology;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3