Influence of the atmospheric plasma spraying parameters on the coating structure and the deposition efficiency of silicon powder

Author:

Bobzin Kirsten,Zhao Lidong,Heinemann Hendrik,Burbaum Elisa

Abstract

AbstractSilicon coatings are usually produced by atmospheric plasma spraying (APS) and used as bond coats in environmental barrier coatings. The deposition efficiency (DE) of silicon powders is generally at a low level in APS processes. The reasons for the low DE values of silicon powders have not been sufficiently investigated in the literature. The aim of this study was to investigate in detail the influence of process parameters on the coating structure and deposition efficiency of a silicon powder processed with APS. A silicon powder with a size distribution of f = –53 + 15 µm was sprayed using a three-cathode plasma generator to produce coatings. The parameters such as plasma gas type, plasma gas flow rate and current intensity were varied widely. Accordingly, the power of the plasma generator increased from P = 19.4 to 51.3 kW, which allowed different melting and evaporation degrees of the powder. Particle velocities and temperatures were measured using a particle diagnostic method. The coatings were investigated in terms of their surfaces and structures using electron scanning microscopy (SEM). The porosities of the coatings were measured using an image analysis system. The deposition efficiency of the processed powder was determined. The results show that the used parameters led to high particle velocities in a range of about vp = 270–360 m/s. High particle temperatures of Tp = 2,650–3,390 °C were determined. The coating porosity varied from Φ = 2% to Φ = 15%. The porosity value of Φ = 2% is significantly lower than the values reported in the literature. The deposition efficiency of the powder changed from DE = 1.5% to DE = 28%. The value of DE = 28% is about 40% higher than the values reported in the literature. The strong grit-blasting effect was the main reason for the lowest DE value of DE = 1.5%. The strong evaporation effect was the main reason for the second lowest DE value of DE = 11.1%. Numerous melted particles and semi-melted particles splashed upon impact with the substrate, resulting in silicon melt loss. In addition, solid cores of semi-molten particles could bounce off, which also resulted in silicon loss. Splashing and bouncing were the main factors affecting DE for the parameter sets with DE values ranging from 18.7% to 28%.

Funder

Deutsche Forschungsgemeinschaft

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3