Online elasticity estimation and material sorting using standard robot grippers

Author:

Patni Shubhan P.ORCID,Stoudek Pavel,Chlup Hynek,Hoffmann Matej

Abstract

AbstractStiffness or elasticity estimation of everyday objects using robot grippers is highly desired for object recognition or classification in application areas like food handling and single-stream object sorting. However, standard robot grippers are not designed for material recognition. We experimentally evaluated the accuracy with which material properties can be estimated through object compression by two standard parallel jaw grippers and a force/torque sensor mounted at the robot wrist, with a professional biaxial compression device used as reference. Gripper effort versus position curves were obtained and transformed into stress/strain curves. The modulus of elasticity was estimated at different strain points and the effect of multiple compression cycles (precycling), compression speed, and the gripper surface area on estimation was studied. Viscoelasticity was estimated using the energy absorbed in a compression/decompression cycle, the Kelvin-Voigt, and Hunt-Crossley models. We found that (1) slower compression speeds improved elasticity estimation, while precycling or surface area did not; (2) the robot grippers, even after calibration, were found to have a limited capability of delivering accurate estimates of absolute values of Young’s modulus and viscoelasticity; (3) relative ordering of material characteristics was largely consistent across different grippers; (4) despite the nonlinear characteristics of deformable objects, fitting linear stress/strain approximations led to more stable results than local estimates of Young’s modulus; and (5) the Hunt-Crossley model worked best to estimate viscoelasticity, from a single object compression. A two-dimensional space formed by elasticity and viscoelasticity estimates obtained from a single grasp is advantageous for the discrimination of the object material properties. We demonstrated the applicability of our findings in a mock single-stream recycling scenario, where plastic, paper, and metal objects were correctly separated from a single grasp, even when compressed at different locations on the object. The data and code are publicly available.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Grantová Agentura České Republiky

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3