Rheological measurement of the nonlinear viscoelasticity of the ABS polymer and numerical simulation of thermoforming process

Author:

Cha Jemyung,Song Hyeong Yong,Hyun Kyu,Go Jeung Sang

Abstract

AbstractThe thickness distribution of thermoformed products is greatly affected by the viscoelastic behavior of the extruded polymer sheet. In this work, linear and nonlinear rheological experiments are carried out to characterize the viscoelastic properties of acrylonitrile-butadiene-styrene sheets under thermoforming conditions including a wide range of temperatures, strains, and strain rates. First, aspects of linear viscoelasticity such as the storage modulus and loss modulus are measured by small-amplitude oscillatory shear experiments. The discrete relaxation spectra and the Williams-Landel-Ferry parameters are obtained from the constructed linear master curves. Then, nonlinear time-dependent extensional viscosity is measured by uniaxial extensional experiments. The parameters of the damping function are evaluated using an optimization method. In addition, the effect of the orientation of the polymer is analyzed. The uniaxial extensional stress and viscosity in the extruder direction demonstrate higher resistance against tearing and extreme thickness reduction during processing. Finally, the linear and nonlinear input parameters for the numerical simulation are prepared. Numerical simulations are performed using the Wagner model with the obtained nonlinear viscoelasticity. The thickness distribution in thermoformed ABS sheets, obtained numerically, shows good agreement with the experimentally obtained values.

Funder

Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3