Research on knowledge graph-driven equipment fault diagnosis method for intelligent manufacturing

Author:

Cai Chang,Jiang Zhengyi,Wu HuiORCID,Wang Junsheng,Liu Jiawei,Song Lei

Abstract

AbstractIn the process of rotating machinery fault diagnosis (RMFD), the lack of feature conditions leads to the problem of low accuracy of traditional rule-based reasoning methods FD. This paper proposed a knowledge graph (KG)-driven device FD method and applied it to RMFD. First, we proposed a multi-level KG construction method to get multi-source data based on each level and analyzed the levels that affected the system state. A single-level KG was constructed through data features, and a multilevel KG with a stereostructure was built using a multi-source data fusion model as data support for FD. Second, we proposed an approach based on multilevel KG and Bayes theory to detect the system state and located the source of faults by combining the KG reasoning based on relational paths, then used the relationships between the structures of rotating mechanical equipment for fault cause reasoning and used the KG as a knowledge base for a reason using machine learning. Finally, the proposed method was validated using a steelworks motor as an example and compared with other ways, such as rule-based FD. The results show that under the condition of missing input features, the accuracy of the proposed method reaches 91.1%, which is significantly higher than other methods and effectively solves the problem of low diagnostic accuracy.

Funder

National Key Research and Development Program

The University of Wollongong

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3