Real-time machine simulation using cutting force calculation based on a voxel material removal model

Author:

Witt Marco,Schumann Marco,Klimant Philipp

Abstract

Abstract Machining processes must be adjusted regarding tolerances in dimension and shape to fulfill product requirements. For this purpose, machine simulations are used to allow a preliminary characterization of the given process, thus minimizing the number of physical prototypes and scrap parts. However, these simulations are either extremely specialized for single problems, e.g., dynamic machine behavior, or they are simplified to a kinematic simulation of the machine without considering the machine behavior at all. This article presents a new approach for a real-time machine simulation by combining four types of simulations to close this gap. This proposed approach uses a voxel-based material removal inside a kinematic machine simulation as input parameters for a cutting force calculation. Afterwards, the forces are applied to a multi-body simulation of the static machine behavior. Starting point of the simulation is a hardware-in-the-loop coupling of a real CNC and a real-time visualization of a virtual machine tool. The simulation is experimental verified by comparing the simulated cutting forces and displacements with the measured forces during the process and the resulting shape of the manufactured work piece. The presented conclusions show the general applicability of the proposed method for the simulation of milling processes.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Reference27 articles.

1. Stroud I (2006) Boundary representation modelling techniques. Springer-Verlag, London

2. Voelcker HB, Requicha AAG (1977) Constructive solid geometry, Rochester

3. Möller T, Haines E, Hoffman N (2010) Real-Time rendering. 3rd edn. Peters, Wellesley

4. van Hook T (1986) Real-time shaded NC milling display. In: Evans DC, Athay RJ (eds). Conference: Proceedings of the 13st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1986, pp 15–20

5. Laine S, Karras T (2011) Efficient sparse voxel octrees. IEEE Trans Vis Comput Graph 17(8):1048–1059

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3