Comparison of reinforcement fibers in 3D printing mortars using multi-criteria analysis

Author:

Alonso-Cañon SaraORCID,Blanco-Fernandez ElenaORCID,Castro-Fresno DanielORCID,Yoris-Nobile Adrian I.ORCID,Castanon-Jano LauraORCID

Abstract

Abstract3D concrete printing (3DCP) has developed rapidly in recent years, with a relatively high amount of mortars emerging apt for 3D printing. Some of these mortars include fibers to improve their strength. Despite mechanical properties having been quite well studied, there still is missing information on cost, printability, and environmental impacts. The objective of this research is to select the best mortars with fibers considering four criteria: printability, mechanical strength, and economic and environmental impact applying a multi-criteria decision-making analysis (MCDMA). Seven types of fibers with different dosages were assessed in the reinforced mortars: zylon, aramid, carbon, glass, cellulose, textile, and polypropylene. AHP method and equal weights were used as ponderation techniques of the criteria while WASPAS and TOPSIS methods were used to calculate the rankings of the MCDMA. Printability was measured through rheological tests using a rotational rheometer, mechanical strength through flexural tests at 28 days based on EN 196–1, and cost just considering the materials and environmental impact through a life cycle assessment (LCA). The results showed that 13-mm-long glass fibers with a content of 0.1% were the best alternative, closely followed by the mortar with 6 mm cellulose fibers with a content of 0.05%. For the best option (G13;0.1), the increments in the printability index, flexural strength, cost, and LCA were − 14.37%, 16.70%, 5.88%, and 2.86%, respectively. It can also be concluded that high elastic modulus fibers (zylon and aramid), although able to increase significantly the flexural strength (up to 30% in the case of zylon), prevent them from being an optimal solution due to their high cost.

Funder

Ministerio de Ciencia e Innovación

Universidad de Cantabria

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3