Submerged arc welding process: enhancement of production performance based on metallurgical observations

Author:

Conte RominaORCID,Battista Francesco Raffaele,Ambrogio Giuseppina

Abstract

AbstractWelding processes are widely used technologies in the industrial context for creating permanent connections between mechanical components. This popularity is due to their versatility, which arises from the numerous available process variants and the multiple advantages they offer compared to other joining techniques. In the manufacturing context, where devices often operate in extreme conditions, the quality of welds becomes a critical factor in ensuring the safety and reliability of the manufactured products. Furthermore, a sound joint requires careful compliance with the increasingly stringent design specifications demanded by customers who require industry-standard conformity in order to achieve defect-free, robust, and durable welds. To address these needs and to define the optimal roadmap for the investigated process condition, an experimental investigation was conducted on the submerged arc welding process. The experimental trials involved butt joints of ASTM A516 Gr.70 carbon steel plates with different thicknesses in a flat position, utilizing a U-shaped chamfer and a multi-pass welding technique. For each weldment, the effects of the main process parameters on the qualitative characteristics of the manufactured products were evaluated from a metallurgical perspective. This evaluation included an in-depth metallographic analysis of the heat-affected zone of the carbon steel joint and involved both the measurement of the dimensions of these areas as well as the amount of ferrite and pearlite that resulted as the phases observed in the final microstructure of the steel joint following its solidification. Furthermore, the joint quality was assessed with regard to mechanical strength through hardness measurements. By analysing the experimental data, the paper provides a valuable contribution for increasing the productivity of the investigated welding process, while simultaneously meeting the specified industrial quality requirements for the products made of medium-thickness carbon steels.

Funder

Ministero dello Sviluppo Economico

Università della Calabria

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3