Exploring a novel chamfered tool design for short duration refill friction stir spot welds of high strength aluminium

Author:

Draper JonathanORCID,Fritsche Sebastian,de Traglia Amancio-Filho Sergio,Galloway Alexander,Toumpis Athanasios

Abstract

AbstractThis work investigates refill friction stir spot welded joints of AA2024-T3 aluminium alloy, produced with short welding times between 3 s and 0.75 s. A novel tool geometry that incorporates a chamfer on the inner edge of the shoulder tip is investigated as a means of improving joint quality at short welding times by easing material flow during the refill stage. The influence of shoulder design on weld microstructure, defect formation, material flow, and mechanical properties was assessed. When compared with a standard shoulder geometry, it was found that the introduction of a chamfer on the inner tip edge improved material flow during the refill stage and led to improved material mixing at the weld periphery. The formation of voids in the region of the weld periphery was eliminated and tensile lap-shear strength of the welded joints was increased by 19% to 7.2 kN, and 27% to 8.16 kN, for 0.75 s and 1.5 s duration welds, respectively.

Funder

Scottish Association for Metals

TAKEOFF

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3