In situ curing and bonding of epoxy prepregs in epoxy thermoset injection molding

Author:

Deringer Tim,Drummer Dietmar

Abstract

AbstractIn this study, epoxy molding compounds are combined with fast-curing epoxy prepregs in thermoset injection molding using a new integrative process. The combination is carried out under the varied parameters of mold temperatures and curing times, which are dominant factors in thermoset processing. The focus of the investigations is the bond strength in the interface resulting from these parameters, as the interface is known as the weak point of hybrid components. To identify causes for possible increases and decreases of the bond strength, additional rheological and thermoanalytical analyses are done under near-process conditions. The influence of prepreg pre-crosslinking, a function of the mold temperature, is also described by means of additional tests in which specific pre-crosslinking of the prepreg is adjusted by the temperature storage and then functionalized in integrative process combination. The aim of the study is to identify and understand initial process limits for the integrative process combination for a potential process window.

Funder

bundesministerium für wirtschaft und energie

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Reference21 articles.

1. Santos G (2017) Road transport and CO2 emissions: what are the challenges?. Transport Policy 59:71–74

2. Grimme W (2008) Measuring the long-term sustainability of air transport – an assessment of the global airline fleet and its CO2 emissions up to the year. Air Transport and Airport Research :1–12

3. Rypdal K (2018) Aircraft emissions. Good practice guidance and uncertainty management in national greenhouse gas inventories 1:93–102

4. N N (2020) Available from: https://www.staralliance.com/de/home#member-airlines

5. Lin Z-M (2013) Making aviation green. Advances in Manufacturing 1:42–49

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3