A novel multiscale material plasticity simulation model for high-performance cutting AISI 4140 steel

Author:

Bai Jinxuan,Tong Zhen

Abstract

AbstractThe achievable machined surface quality relies significantly on the material behavior during the high-performance cutting process. In this paper, a multiscale material plasticity simulation framework is developed to predict the deformation behaviors of AISI 4140 steel under various high-performance cutting conditions. The framework was built by coupling a three-dimensional discrete dislocation dynamic (3D-DDD) model with a finite element method (FEM) through the optimization of a dislocation density-based (DDB) constitutive equation (compiled as a user-defined subroutine in ABAQUS). The movement of edge and screw dislocations such as generation, propagation, siding, and their interactions, was performed by 3D-DDD, and the statistical features of dislocations were used to optimize the critical constants of the DDB constitutive equation. For validation, a classic FEM cutting model (Johnson-Cook constitutive equation) was employed as a reference. The simulation results indicated that the proposed multiscale model not only can precisely predict the stress, strain, cutting force, and temperature as those predicted by the classic FEM simulations, but also capture the microstructure characteristics such as grain size and dislocation density distributions under the tested cutting conditions. Severe dynamic recrystallization phenomena were found at the core shear zones. The recrystallization process reached a dynamic equilibrium at the machined surfaces when the cutting speed is larger than 280 m/min or the external-assisted temperature is between 200 and 350°, indicating an optimal range of machining parameters for improved surface integrity.

Funder

Horizon 2020 Framework Programme

Science and Technology Facilities Council

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3