A systematic decision-making framework for tackling quantum software engineering challenges

Author:

Akbar Muhammad Azeem,Khan Arif Ali,Rafi Saima

Abstract

AbstractQuantum computing systems harness the power of quantum mechanics to execute computationally demanding tasks more effectively than their classical counterparts. This has led to the emergence of Quantum Software Engineering (QSE), which focuses on unlocking the full potential of quantum computing systems. As QSE gains prominence, it seeks to address the evolving challenges of quantum software development by offering comprehensive concepts, principles, and guidelines. This paper aims to identify, prioritize, and develop a systematic decision-making framework of the challenging factors associated with QSE process execution. We conducted a literature survey to identify the challenging factors associated with QSE process and mapped them into 7 core categories. Additionally, we used a questionnaire survey to collect insights from practitioners regarding these challenges. To examine the relationships between core categories of challenging factors, we applied Interpretive Structure Modeling (ISM). Lastly, we applied fuzzy TOPSIS to rank the identified challenging factors concerning to their criticality for QSE process. We have identified 22 challenging factors of QSE process and mapped them to 7 core categories. The ISM results indicate that the ‘resources’ category has the most decisive influence on the other six core categories of the identified challenging factors. Moreover, the fuzzy TOPSIS indicates that ‘complex programming’, ‘limited software libraries’, ‘maintenance complexity’, ‘lack of training and workshops’, and ‘data encoding issues’ are the highest priority challenging factor for QSE process execution. Organizations using QSE could consider the identified challenging factors and their prioritization to improve their QSE process.

Funder

University of Oulu including Oulu University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. qSOA®: Dynamic integration for hybrid quantum/Classical software systems;Journal of Systems and Software;2024-08

2. Evaluación de la mantenibilidad de los sistemas híbridos (clásico-cuánticos);Anais do XXVII Congresso Ibero-Americano em Engenharia de Software (CIbSE 2024);2024-05-06

3. A Framework for Quantum based Software Development Process;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18

4. Agile meets quantum: a novel genetic algorithm model for predicting the success of quantum software development project;Automated Software Engineering;2024-04-04

5. Unraveling quantum computing system architectures: An extensive survey of cutting-edge paradigms;Information and Software Technology;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3