1. Ahmad, W.U., Chakraborty, S., Ray, B., Chang, K.W.: A transformer-based approach for source code summarization. arXiv preprint arXiv:200500653 (2020)
2. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs with graphs. arXiv preprint arXiv:1711.00740 (2017)
3. Allamanis, M., Peng, H., Sutton, C.: A convolutional attention network for extreme summarization of source code. In: International conference on machine learning, PMLR, pp. 2091–2100 (2016)
4. Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C.: A survey of machine learning for big code and naturalness. ACM Comput. Surv. (CSUR) 51(4), 1–37 (2018)
5. Alon, U., Brody, S., Levy, O., Yahav, E.: code2seq: Generating sequences from structured representations of code. arXiv preprint arXiv:1808.01400 (2018)