1. Alhroob, A., Imam, A.T., Al-Heisa, R.: The use of artificial neural networks for extracting actions and actors from requirements document. Inf. Softw. Technol. 101, 1–15 (2018)
2. Allamanis, M., Barr, E.T., Devanbu, P.T., Sutton, C.: A survey of machine learning for big code and naturalness. ACM Comput. Surv. 51(4), 81–18137 (2018)
3. Antoniol, G., Ayari, K., Penta, M.D., Khomh, F., Guéhéneuc, Y.: Is it a bug or an enhancement?: a text-based approach to classify change requests. In: Proceedings of the 28th Annual International Conference on Computer Science and Software Engineering, CASCON 2018, Markham, Ontario, Canada, October 29–31, 2018, pp. 2–16 (2018)
4. Cabral, G.G., Minku, L.L., Shihab, E., Mujahid, S.: Class imbalance evolution and verification latency in just-in-time software defect prediction. In: Proceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25–31, 2019, pp. 666–676 (2019)
5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)