Optimizing regression testing with AHP-TOPSIS metric system for effective technical debt evaluation

Author:

Zarrad Anis,Bahsoon Rami,Manimaran Priya

Abstract

AbstractRegression testing is essential to ensure that the actual software product confirms the expected requirements following modification. However, it can be costly and time-consuming. To address this issue, various approaches have been proposed for selecting test cases that provide adequate coverage of the modified software. Nonetheless, problems related to omitting and/or rerunning unnecessary test cases continue to pose challenges, particularly with regard to technical debt (TD) resulting from code coverage shortcomings and/or overtesting. In the case of testing-related shortcomings, incurring TD may result in cost and time savings in the short run, but it can lead to future maintenance and testing expenses. Most prior studies have treated test case selection as a single-objective or two-objective optimization problem. This study introduces a multi-objective decision-making approach to quantify and evaluate TD in regression testing. The proposed approach combines the analytic-hierarchy-process (AHP) method and the technique of order preference by similarity to an ideal solution (TOPSIS) to select the most ideal test cases in terms of objective values defined by the test cost, code coverage, and test risk. This approach effectively manages the software regression testing problems. The AHP method was used to eliminate subjective bias when optimizing objective weights, while the TOPSIS method was employed to evaluate and select test-case alternatives based on TD. The effectiveness of this approach was compared to that of a specific multi-objective optimization method and a standard coverage methodology. Unlike other approaches, our proposed approach always accepts solutions based on balanced decisions by considering modifications and using risk analysis and testing costs against potential technical debt. The results demonstrate that our proposed approach reduces both TD and regression testing efforts.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3