Novel solution strategies for multiparametric nonlinear optimization problems with convex objective function and linear constraints

Author:

Narciso Diogo A. C.ORCID,Pistikopoulos Efstratios N.ORCID

Abstract

AbstractThis paper expands the multiparametric quadratic programming (mp-QP) framework presented in Narciso et al. (Comput Chem Eng 164:107882, 2022. https://doi.org/10.1016/j.compchemeng.2022.107882) to the more general multiparametric nonlinear programming (mp-NLP) case. First, the vector of parameters in mp-NLP problems is recast so that a unique transformed parameter is implicitly assigned to each of the inequality constraints. Maps of critical regions in this transformed space of parameters feature a set of 1-dimensional parametric edges (two per inequality constraint), which then greatly facilitate solution calculation. In the mp-NLP case, however, parametric edges define nonlinear semi-infinite lines; this requires an adaptation to the mp-QP algorithm (deals with linear parametric edges only), to enable a suitable calculation path to the more general nonlinear case. Three routes are proposed to mp-NLPs: the first route delivers solutions in compact form (same format as in mp-QP) using a single reference point per edge; the second route delivers explicit solutions using a hybrid approach for critical region construction, where all active sets not detected in the parameters space are excluded from the solution (equivalent to first route concerning accuracy); the third route builds on the initial explicit solution and further partitions the parameters space until all solution fragments satisfy an error check. Five algorithms were coded for these routes, and tested in a large range of mp-NLP problems. These strategies enable significant improvements in terms of solution accuracy, algorithm efficiency, and interpretability when compared to the state-of-the-art mp-NLP algorithms.

Funder

Ministério da Ciência, Tecnologia e Ensino Superior

Universidade de Lisboa

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3