Author:
Garralda-Guillem A. I.,Montiel López P.
Abstract
AbstractIn the present work, firstly, we use a minimax equality to prove the existence of a solution to a certain system of varitional equations providing a numerical approximation of such a solution. Then, we propose a numerical method to solve a collage-type inverse problem associated with the corresponding system, and illustrate the behaviour of the method with a numerical example.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Control and Optimization,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Software
Reference38 articles.
1. Ansari QH, Yao JC (1999) A fixed point theorem and its applications to a system of variational inequalities. Bullet Aus Math Soc 59:433–442
2. Aubin JP (1998) Optima and equilibria An introduction to nonlinear analysis Graduate Texts in Mathematics. Springer, Berlin
3. Berenguer MI, Kunze H, La Torre D, Ruiz Galán M (2016) Galerkin method for constrained variational equations and a collage-based approach to related inverse problems. J Comput Appl Math 292:67–75
4. Berenguer MI, Fortes MA, Garralda-Guillem AI, Ruiz Galán M (2004) Linear Volterra integro-differential equation and Schauder bases. Appl Math Comput 159:495–507
5. Bigi G, Castellani M, Pappalardo M, Passacantando M (2019) Nonlinear Programming Techniques for Equilibria EURO advanced tutorials on operational research. Springer, Cham
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献