Sequentially coupled gradient-based topology and domain shape optimization

Author:

Wang Zhijun,Suiker Akke S. J.,Hofmeyer Hèrm,Kalkman Ivo,Blocken Bert

Abstract

AbstractA coupled topology and domain shape optimization framework is presented that is based on incorporating the shape design variables of the design domain in the Solid Isotropic Material with Penalization topology optimization method. The shape and topology design variables are incrementally updated in a sequential fashion, using a staggered numerical update scheme. Non-Uniform Rational B-Splines are employed to parameterize the shape of the design domain. This not only guarantees a highly accurate description of the shape boundaries by means of smooth basis functions with compact support, but also enables an efficient control of the design domain with only a few control points. Furthermore, the optimization process is performed in a computationally efficient way by applying a gradient-based optimization algorithm, for which the sensitivities can be computed in closed form. The usefulness of the coupled optimization approach is demonstrated by analyzing several benchmark problems that are subjected to different types of initial conditions and domain bounds. The variation in simulation results denotes that a careful construction of the initial design domain is necessary and meaningful.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Control and Optimization,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3