Author:
Petelin Gašper,Antoniou Margarita,Papa Gregor
Abstract
AbstractThe ground station scheduling problem is a complex scheduling problem involving multiple objectives. Evolutionary techniques for multi-objective optimization are becoming popular among different fields, due to their effectiveness in obtaining a set of trade-off solutions. In contrast to some conventional methods, that aggregate the objectives into one weighted-sum objective function, multi-objective evolutionary algorithms manage to find a set of solutions in the Pareto-optimal front. Selecting one algorithm, however, for a specific problem adds additional challenge. In this paper the ground station scheduling problem was solved through six different evolutionary multi-objective algorithms, the NSGA-II, NSGA-III, SPEA2, GDE3, IBEA, and MOEA/D. The goal is to test their efficacy and performance to a number of benchmark static instances of the ground scheduling problem. Benchmark instances are of different sizes, allowing further testing of the behavior of the algorithms to different dimensionality of the problem. The solutions are compared to the recent solutions of a weighted-sum approach solved by the GA. The results show that all multi-objective algorithms manage to find as good solution as the weighted-sum, while giving more additional alternatives. The decomposition-based MOEA/D outperforms the rest of the algorithms for the specific problem in almost all aspects.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Control and Optimization,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Software
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献