Author:
Schultes Johanna,Stiglmayr Michael,Klamroth Kathrin,Hahn Camilla
Abstract
AbstractIn engineering applications one often has to trade-off among several objectives as, for example, the mechanical stability of a component, its efficiency, its weight and its cost. We consider a biobjective shape optimization problem maximizing the mechanical stability of a ceramic component under tensile load while minimizing its volume. Stability is thereby modeled using a Weibull-type formulation of the probability of failure under external loads. The PDE formulation of the mechanical state equation is discretized by a finite element method on a regular grid. To solve the discretized biobjective shape optimization problem we suggest a hypervolume scalarization, with which also unsupported efficient solutions can be determined without adding constraints to the problem formulation. FurthIn this section, general properties of the hypervolumeermore, maximizing the dominated hypervolume supports the decision maker in identifying compromise solutions. We investigate the relation of the hypervolume scalarization to the weighted sum scalarization and to direct multiobjective descent methods. Since gradient information can be efficiently obtained by solving the adjoint equation, the scalarized problem can be solved by a gradient ascent algorithm. We evaluate our approach on a 2 D test case representing a straight joint under tensile load.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Control and Optimization,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献