Control trajectory optimisation and optimal control of an electric vehicle HVAC system for favourable efficiency and thermal comfort

Author:

Cvok IvanORCID,Škugor BranimirORCID,Deur JoškoORCID

Abstract

AbstractIn order to increase the driving range of battery electric vehicles, while maintaining a high level of thermal comfort inside the passenger cabin, it is necessary to design an energy management system which optimally synthesizes multiple control actions of heating, ventilation and air-conditioning (HVAC) system. To gain an insight into optimal control actions and set a control benchmark, the paper first proposes an algorithm of dynamic programming (DP)-based optimisation of HVAC control variables, which minimises the conflicting criteria of passenger thermal comfort and HVAC efficiency. Next, a hierarchical structure of thermal comfort control system is proposed, which consists of optimised low-level feedback controllers, optimisation-based control allocation algorithm that sets references for the low-level controllers, and a superimposed cabin temperature controller that commands the cooling capacity to the allocation algorithm. Finally, the overall control system is verified by simulation for cool-down scenario, and the simulation results are compared with the DP benchmark. The results show that the control system behaviour can approach the DP benchmark if the superimposed controller bandwidth is tuned along with the allocation cost function weighting coefficients, where a fast controller tuning relates to better thermal comfort while a slow tuning results in improved efficiency.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Control and Optimization,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Software

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3