Extensions to generalized disjunctive programming: hierarchical structures and first-order logic

Author:

Perez Hector D.,Grossmann Ignacio E.

Abstract

AbstractOptimization problems with discrete–continuous decisions are traditionally modeled in algebraic form via (non)linear mixed-integer programming. A more systematic approach to modeling such systems is to use generalized disjunctive programming (GDP), which extends the disjunctive programming paradigm proposed by Egon Balas to allow modeling systems from a logic-based level of abstraction that captures the fundamental rules governing such systems via algebraic constraints and logic. Although GDP provides a more general way of modeling systems, it warrants further generalization to encompass systems presenting a hierarchical structure. This work extends the GDP literature to address two major alternatives for modeling and solving systems with nested (hierarchical) disjunctions: explicit nested disjunctions and equivalent single-level disjunctions. We also provide theoretical proofs on the relaxation tightness of such alternatives, showing that explicitly modeling nested disjunctions is superior to the traditional approach discussed in literature for dealing with nested disjunctions.

Funder

Carnegie Mellon University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Control and Optimization,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3