A column generation algorithm for solving energy system planning problems

Author:

Muts Pavlo,Bruche Stefan,Nowak Ivo,Wu Ouyang,Hendrix Eligius M. T.,Tsatsaronis George

Abstract

AbstractEnergy system optimization models are typically large models which combine sub-models which range from linear to very nonlinear. Column generation (CG) is a classical tool to generate feasible solutions of sub-models, defining columns of global master problems, which are used to steer the search for a global solution. In this paper, we present a new inner approximation method for solving energy system MINLP models. The approach is based on combining CG and the Frank Wolfe algorithm for generating an inner approximation of a convex relaxation and a primal heuristic for computing solution candidates. The features of this approach are: (i) no global branch-and-bound tree is used, (ii) sub-problems can be solved in parallel to generate columns, which do not have to be optimal, nor become available at the same time to synchronize the solution, (iii) an arbitrary solver can be used to solve sub-models, (iv) the approach (and the implementation) is generic and can be used to solve other nonconvex MINLP models. We perform experiments with decentralized energy supply system models with more than 3000 variables. The numerical results show that the new decomposition method is able to compute high-quality solutions and has the potential to outperform state-of-the-art MINLP solvers.

Funder

Hochschule für Angewandte Wissenschaften Hamburg (HAW Hamburg)

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Control and Optimization,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the use of overlapping convex hull relaxations to solve nonconvex MINLPs;Journal of Global Optimization;2024-03-22

2. On Optimizing Ensemble Models using Column Generation;Journal of Optimization Theory and Applications;2024-02-22

3. Linearised Optimal Power Flow Problem Solution using Dantzig - Wolfe decomposition;2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe);2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3