Global solution of constrained min-max problems with inflationary differential evolution

Author:

Filippi Gianluca,Vasile Massimiliano

Abstract

AbstractThis paper proposes a method for the solution of constrained min-max problems. The method is tested on a benchmark of representative problems presenting different structures for the objective function and the constraints. The particular min-max problem addressed in this paper finds application in optimisation under uncertainty when the constraints need to be satisfied for all possible realisations of the uncertain quantities. Hence, the algorithm proposed in this paper search for solutions that minimise the worst possible outcome for the objective function due to the uncertainty while satisfying the constraint functions in all possible scenarios. A constraint relaxation and a scalarisation procedure are also introduced to trade-off between objective optimality and constraint satisfaction when no feasible solutions can be found.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Control and Optimization,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Software

Reference42 articles.

1. Abdelbar AM, Ragab S, Mitri S (2003) Applying Co-Evolutionary Particle Swam Optimization to the Egyptian Board Game Seega. Proceedings of the First Asian-Pacific Workshop on Genetic Programming, pp 9–15

2. Agnew D (1981) Improved minimax optimization for circuit design. IEEE Trans Circuits Syst 28:791–803

3. Aissi H, Bazgan C, Vanderpooten D (2008) Min-max and min-max regret versions of combinatorial optimization problems: a survey. Eur J Op Res 197:427–438

4. Barbosa HJ (1999) A coevolutionary genetic algorithm for constrained optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol 3, pp 1605–1611

5. Baxter R, Hastings N, Law A, Glass EJ (2008) Algorithms for worst-case design and applications to risk management, vol 39

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3