Publisher
Springer Berlin Heidelberg
Reference39 articles.
1. I. Bárány, G. Károlyi, Problems and results around the Erdős–Szekeres convex polygon theorem, in Discrete and computational geometry (Tokyo, 2000), Lecture Notes in Comput. Sci. (Springer, Berlin, 2001), pp. 91–105
2. I. Bárány, P. Valtr, A positive fraction Erdős-Szekeres theorem. Discret. Comput. Geom. 19, 335–342 (1998)
3. T. Bisztriczky, G. Fejes, Tóth, A generalization of the Erdős-Szekeres convex $$n$$-gon theorem. J. Reine Angew. Math. 395, 167–170 (1989)
4. T. Bisztriczky, G. Fejes, Tóth, Nine convex sets determine a pentagon with convex sets as vertices. Geom. Dedicata 31, 89–104 (1989)
5. T. Bisztriczky, G. Fejes Tóth, Convexly independent sets. Combinatorica 10, 195–202 (1990)