1. Běhounek, L.: In which sense is fuzzy logic a logic for vagueness? In: Lukasiewicz, T., Peñaloza, R., Turhan, A.Y. (eds.) Proceedings of the First Workshop on Logics for Reasoning about Preferences, Uncertainty, and Vagueness (PRUV 2014), Vienna, pp. 26–39 (2014)
2. Běhounek, L., Cintula, P.: Fuzzy logics as the logics of chains. Fuzzy Sets Syst. 157(5), 604–610 (2006)
3. Blok, W.J., Pigozzi, D.L.: Algebraizable Logics, Memoirs of the American Mathematical Society, vol. 396. American Mathematical Society, Providence (1989). http://orion.math.iastate.edu/dpigozzi/
4. Casari, E.: Comparative logics and Abelian $$\ell $$ ℓ -groups. In: Logic Colloquium 1988, Padova. Studies in Logic and the Foundations of Mathematics, vol. 127, pp. 161–190. North-Holland, Amsterdam (1989)
5. Cignoli, R., Esteva, F., Godo, L., Torrens, A.: Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft. Comput. 4(2), 106–112 (2000)