ModelarDB: Integrated Model-Based Management of Time Series from Edge to Cloud

Author:

Jensen Søren KejserORCID,Thomsen ChristianORCID,Pedersen Torben BachORCID

Abstract

AbstractTo ensure critical infrastructure is operating as expected, high-quality sensors are increasingly installed. However, due to the enormous amounts of high-frequency time series they produce, it is impossible or infeasible to transfer or even store these time series in the cloud when using state-of-the-practice compression methods. Thus, simple aggregates, e.g., 1–10-minutes averages, are stored instead of the raw time series. However, by only storing these simple aggregates, informative outliers and fluctuations are lost. Many Time Series Management System (TSMS) have been proposed to efficiently manage time series, but they are generally designed for either the edge or the cloud. In this paper, we describe a new version of the open-source model-based TSMS ModelarDB. The system is designed to be modular and the same binary can be efficiently deployed on the edge and in the cloud. It also supports continuously transferring high-frequency time series compressed using models from the edge to the cloud. We first provide an overview of ModelarDB, analyze the requirements and limitations of the edge, and evaluate existing query engines and data stores for use on the edge. Then, we describe how ModelarDB has been extended to efficiently manage time series on the edge, a novel file-based data store, how ModelarDB’s compression has been improved by not storing time series that can be derived from base time series, and how ModelarDB transfers high-frequency time series from the edge to the cloud. As the work that led to ModelarDB began in 2015, we also reflect on the lessons learned while developing it.

Publisher

Springer Berlin Heidelberg

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Why Model-Based Lossy Compression is Great for Wind Turbine Analytics;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. Form-Based Semantic Caching on Time Series;Lecture Notes in Computer Science;2024

3. Machine Learning Platform for Extreme Scale Computing on Compressed IoT Data;2022 IEEE International Conference on Big Data (Big Data);2022-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3