Abstract
AbstractThis chapter is devoted to compact graphs formed by a finite number of bounded intervals. We already know that the spectrum of the corresponding magnetic Schrödinger operator is discrete and our main goal is to obtain characteristic equations determining the spectrum (eigenvalues) precisely. We describe here three different methods to obtain an explicit characteristic equation.
Publisher
Springer Berlin Heidelberg
Reference9 articles.
1. N. Aronszajn, W.F. Donoghue, A supplement to the paper on exponential representations of analytic functions in the upper half-plane with positive imaginary part. J. Anal. Math. 12, 113–127 (1964). https://doi.org/10.1007/BF02807431. MR0168769
2. S. Avdonin, V. Mikhaylov, A. Rybkin, The boundary control approach to the Titchmarsh-Weyl m-function. I. The response operator and the A-amplitude. Commun. Math. Phys. 275(3), 791–803 (2007). https://doi.org/10.1007/s00220-007-0315-2. MR2336364
3. G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte. Acta Math. 78, 1–96 (1946). https://doi.org/10.1007/BF02421600 (German). MR15185
4. F. Gesztesy, E. Tsekanovskii, On matrix-valued Herglotz functions. Math. Nachr. 218, 61–138 (2000). https://doi.org/10.1002/1522-2616(200010)218:1%3C61::AID-MANA61%3E3.3.CO;2-4. MR1784638
5. B. Gutkin, U. Smilansky, Can one hear the shape of a graph?. J. Phys. A 34(31), 6061–6068 (2001). https://doi.org/10.1088/0305-4470/34/31/301. MR1862642