Abstract
AbstractWith this chapter we start the discussion on how to solve in full generality the inverse problems for Schrödinger operators on metric graphs.
Publisher
Springer Berlin Heidelberg
Reference75 articles.
1. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. (2) 115, 485–491 (1959). MR110458
2. S. Avdonin, M. Belishev, Boundary control and dynamical inverse problem for nonselfadjoint Sturm-Liouville operator (BC-method). Control Cybernet. 25(3), 429–440 (1996). Distributed parameter systems: modelling and control (Warsaw, 1995). MR1408711
3. S. Avdonin, P. Kurasov, Inverse problems for quantum trees. Inverse Probl. Imaging 2(1), 1–21 (2008). https://doi.org/10.3934/ipi.2008.2.1. MR2375320
4. S.A. Avdonin, M.I. Belishev, S.A. Ivanov, Boundary control and an inverse matrix problem for the equation utt − uxx + V (x)u = 0. Mat. Sb. 182(3), 307-331 (1991). https://doi.org/10.1070/SM1992v072n02ABEH002141 (Russian)
5. English transl., Math. USSR-Sb. 72(2), 287-310 (1992). MR1110068