Abstract
AbstractObtained spectral estimates will be applied in this chapter to prove a direct analog (for differential operators on graphs) of the celebrated Ambartsumian theorem.
Publisher
Springer Berlin Heidelberg
Reference14 articles.
1. V. Ambarzumian, Über eine Frage der Eigenwerttheorie. Zeit. für Phys. 53, 690–695 (1929)
2. J. Boman, P. Kurasov, R. Suhr, Schrödinger operators on graphs and geometry II. Spectral estimates for L1-potentials and an Ambartsumian theorem. Integr. Equ. Oper. Theory 90(3), Paper No. 40, 24 (2018). https://doi.org/10.1007/s00020-018-2467-1. MR3807959
3. G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte. Acta Math. 78, 1–96 (1946). https://doi.org/10.1007/BF02421600 (German). MR15185
4. G. Borg, Uniqueness theorems in the spectral theory of $$y^{\prime \prime } + (\lambda - q(x))y = 0$$. Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949 (Johan Grundt Tanums Forlag, Oslo, 1952), pp. 276–287. MR0058063
5. M.M. Crum, Associated Sturm-Liouville systems. Quart. J. Math. Oxford Ser. (2) 6, 121–127 (1955). https://doi.org/10.1093/qmath/6.1.121. MR0072332