Communication-Efficient Distributed Online Prediction by Dynamic Model Synchronization

Author:

Kamp Michael,Boley Mario,Keren Daniel,Schuster Assaf,Sharfman Izchak

Publisher

Springer Berlin Heidelberg

Reference24 articles.

1. Abernethy, J., Agarwal, A., Bartlett, P.L., Rakhlin, A.: A stochastic view of optimal regret through minimax duality. In: 22nd Annual Conference on Learning Theory (2009)

2. Balcan, M.-F., Blum, A., Fine, S., Mansour, Y.: Distributed learning, communication complexity and privacy. CoRR, abs/1204.3514 (2012)

3. Bar-Or, A., Wolff, R., Schuster, A., Keren, D.: Decision tree induction in high dimensional, hierarchically distributed databases. In: Proceedings of the SIAM International Conference on Data Mining (2005)

4. Bshouty, N.H., Long, P.M.: Linear classifiers are nearly optimal when hidden variables have diverse effects. Machine Learning 86(2), 209–231 (2012)

5. Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games. Cambridge University Press (2006) ISBN 978-0-521-84108-5

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decentralized Online Learning: Take Benefits from Others’ Data without Sharing Your Own to Track Global Trend;ACM Transactions on Intelligent Systems and Technology;2022-11-09

2. Vertical Fusion: A Distributed Learning Approach for Vertically Partitioned Data;Lecture Notes in Electrical Engineering;2022

3. Communication efficient distributed learning of neural networks in Big Data environments using Spark;2021 IEEE International Conference on Big Data (Big Data);2021-12-15

4. Accelerating Distributed Online Meta-Learning via Multi-Agent Collaboration under Limited Communication;Proceedings of the Twenty-second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing;2021-07-26

5. Approaches to Uncertainty Quantification in Federated Deep Learning;Communications in Computer and Information Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3