Author:
Agarwal Pankaj K.,Fox Kyle,Nath Abhinandan,Sidiropoulos Anastasios,Wang Yusu
Publisher
Springer Berlin Heidelberg
Reference16 articles.
1. Agarwal, P.K., Fox, K., Nath, A., Sidiropoulos, A., Wang, Y.: Computing the Gromov-Hausdorff distance for metric trees (2015). CoRR,
abs/1509.05751
2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)
3. Bauer, U., Ge, X., Wang, Y.: Measuring distance between Reeb graphs. In: 30th Annual Symposium on Computational Geometry, p. 464 (2014)
4. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM J. Sci. Comput. 28(5), 1812–1836 (2006)
5. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. American Mathematical Society, Providence (2001)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献