Creating Synthetic Training Data for Machine Vision Quality Gates

Author:

Gräßler Iris,Hieb Michael,Roesmann Daniel,Unverzagt Marc

Abstract

AbstractManufacturing companies face the challenge of combining increasing productivity and quality standards with customer″​=oriented mass production. To achieve the required quality standards, quality controls are carried out after selected production steps. These are often visual inspections by trained personnel based on checklists. To automate visual inspection industrial, cameras and powerful machine vision algorithms are needed. Large amounts of visual training data are usually required in order to train these algorithms. However, collecting training data is time″​=consuming, especially in customer″​=oriented mass production. Synthetic training data generated by CAD tools and rendering software can alleviate the lack of available training data. Within the paper at hand, a novel approach is presented examining the use of synthetic training data in machine vision applications. The results show that synthetically generated training data used to train machine vision quality gates is fundamentally suitable. This offers great potential to relieve process and productions developers in the development of quality gates in the future.

Publisher

Springer Berlin Heidelberg

Reference16 articles.

1. Gräßler I, Pöhler A (2019) Human-centric design of cyber-physical production systems. Procedia CIRP 84:251–256

2. Steger C, Ulrich M, Wiedemann C (2018) Machine vision algorithms and applications. Wiley-VCH, Weinheim

3. Hinterstoisser S, Olivier P, Hauke Marek HMBM (2019) An annotation saved is an annotation earned: using fully synthetic training for object detection

4. Tobin J, Fong R, Ray A, Schneider J, Zaremba W, Abbel P (2017) Domain randomization for transferring deep neural networks from simulation to the real world. https://arxiv.org/pdf/1703.06907 (Created 03.2017)

5. Borkman S, Crespi A, Dhakad S, Ganguly S, Hogins J, Jhang Y-C, Kamalzadeh M, Li B, Leal S, Parisi P, Romero C, Smith W, Thaman A, Warren S, Yadav N (2021) Unity perception: generate synthetic data for computer vision. https://arxiv.org/abs/2107.04259 (Created 07.2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3