Author:
Kayem Anne V. D. M.,Vester C. T.,Meinel Christoph
Publisher
Springer Berlin Heidelberg
Reference50 articles.
1. Aggarwal, C.C.: On k-anonymity and the curse of dimensionality. In: Proceedings of the 31st International Conference on Very Large Data Bases, VLDB 2005, pp. 901–909. VLDB Endowment (2005)
2. Aggarwal, C.C.: On unifying privacy and uncertain data models. In: Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, ICDE 2008, pp. 386–395. IEEE Computer Society, Washington, DC, USA (2008)
3. Aggarwal, C.C., Yu, P.S.: Privacy-Preserving Data Mining: Models and Algorithms, 1st edn. Springer Publishing Company Incorporated, New York (2008). https://doi.org/10.1007/978-0-387-70992-5
4. Aytug, H., Koehler, G.J.: New stopping criterion for genetic algorithms. Eur. J. Oper. Res. 126(3), 662–674 (2000)
5. Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In: 21st International Conference on Data Engineering (ICDE 2005), pp. 217–228, April 2005
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Energy cost and accuracy impact of k-anonymity;2022 International Conference on ICT for Sustainability (ICT4S);2022-06
2. Proximity Measurement for Hierarchical Categorical Attributes in Big Data;Security and Communication Networks;2021-07-05