1. Abeßer, J., Hasselhorn, J., Grollmisch, S., Dittmar, C., Lehmann, A.: Automatic competency assessment of rhythm performances of ninth-grade and tenth-grade pupils. In: Proceedings of the International Computer Music Conference (ICMC). Athens (2014)
2. Adel, T., Ghahramani, Z., Weller, A.: Discovering interpretable representations for both deep generative and discriminative models. In: Proceedings of the International Conference on Machine Learning (ICML), Proceedings of Machine Learning Research, S. 50–59. Stockholm. http://proceedings.mlr.press/v80/adel18a.html (2018). Zugegriffen am 18.12.2022
3. Allvin, R.L.: Computer-assisted music instruction: a look at the potential. J. Res. Music Educ. 19(2). http://www.jstor.org/stable/3343819 (1971). Zugegriffen am 18.12.2022
4. Bello, J.P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M., Sandler, M.B.: A tutorial on onset detection in music signals. IEEE Trans. Speech Audio Proc. 13(5), 1035–1047. https://doi.org/10.1109/TSA.2005.851998. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1495485 (2005). Zugegriffen am 18.12.2022
5. Benetos, E., Dixon, S., Giannoulis, D., Kirchhoff, H., Klapuri, A.: Automatic music transcription: challenges and future directions. J. Intell. Inf. Syst. 41(3), 407–434 (2013). http://link.springer.com/10.1007/s10844-013-0258-3.00001