Publisher
Springer Berlin Heidelberg
Reference13 articles.
1. Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–52160.
2. Brown, T. B., Mané, D., Roy, A., Abadi, M., & Gilmer, J. (2017). Adversarial patch. arXiv preprint. arXiv:1712.09665.
3. Castelvecchi, D. (2016). Can we open the black box of AI? Nature News, 538(7623), 20.
4. Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint. arXiv:1702.08608.
5. Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., …, & Song, D. (2018). Robust physical-world attacks on deep learning visual classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1625–1634).