Stochastic Differential Equations

Author:

Protter Philip

Publisher

Springer Berlin Heidelberg

Reference6 articles.

1. The extension of the (math) norm from martingales to semimartingales was implicit in Protter [1] and first formally proposed by Emery [1]. A comprehensive account of this important norm for semimartingales can be found in Dellacherie-Meyer [2]. Emery’s inequalities (Theorem 3) were first established in Emery [1], and later extended by Meyer [12].

2. Existence and uniqueness of solutions of stochastic differential equations driven by general semimartingales was first established by Doléans-Dade [4] and Protter [2], building on the result for continuous semimartingales in Protter [1]. Before this Kazamaki [1] published a preliminary result, and of course the literature on stochastic differential equations driven by Brownian motion and Lebesgue measure, as well as Poisson processes, was extensive. See, for example, the book of Gihman-Skorohod [1] in this regard. These results were improved and simplified by Doléans-Dade-Meyer [2] and Emery [3]; our approach is inspired by Emery [3]. Métiver-Pellaumail [2] have an alternative approach. See also Métivier [1]. Other treatments can be found in Doléans-Dade [5] and Jacod [1].

3. The stability theory is due to Protter [4], Emery [3], and also to Métivier-Pellaumail [3]. The semimartingale topology is due to Emery [2] and Métivier-Pellaumail [3]. A pedagogic treatment is in Dellacherie-Meyer [2].

4. The generalization of Fisk-Stratonovich integrals to semimartingales is due to Meyer [8]. The treatment here of Fisk-Stratonovich differential equations is new. The idea of quadratic variation is due to Wiener [3]. Theorem 18, which is a random Itô’s formula, appears in this form for the first time. It has an antecedent in Doss-Lenglart [1], and for a very general version (containing some quite interesting consequences), see Sznitman [1]. Theorem 19 generalizes a result of Meyer [8], and Theorem 22 extends a result of Doss-Lenglart [1]. Theorem 24 and its Corollary is from Ito [7]. Theorem 25 is inspired by the work of Doss [1] (see also Ikeda-Watanabe [1] and Sussman [1]). The treatment of approximations of the Fisk-Stratonovich integrals was inspired by Yor [2]. For an interesting application see Rootzen [1].

5. The results of Sect. 6 are taken from Protter [3] and Çinlar-Jacod-Protter-Sharpe [1], A comprehensive pedagogic treatment when the Markov solutions are diffusions can be found in Stroock-Varadhan [1] or Williams [1] and Rogers-Williams [1].

Cited by 277 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Itô Integrals;Stochastic Calculus via Regularizations;2022

2. Processes, Brownian Motion and Martingales;Stochastic Calculus via Regularizations;2022

3. Föllmer–Dirichlet Processes;Stochastic Calculus via Regularizations;2022

4. Itô SDEs with Non-Lipschitz Coefficients;Stochastic Calculus via Regularizations;2022

5. Itô Classical Stochastic Differential Equations;Stochastic Calculus via Regularizations;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3