Author:
Chen Liang-Ting,Urbat Henning
Publisher
Springer Berlin Heidelberg
Reference25 articles.
1. Adámek, J., Milius, S., Myers, R.S.R., Urbat, H.: Generalized Eilenberg theorem I: local varieties of languages. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 366–380. Springer, Heidelberg (2014). http://arxiv.org/pdf/1501.02834v1.pdf
2. Adámek, J., Milius, S., Urbat, H.: Syntactic monoids in a category. In: Proceedings of CALCO 2015. LIPIcs, Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2015)
3. Adámek, J., Myers, R., Milius, S., Urbat, H.: Varieties of languages in a category. In: LICS 2015. IEEE (2015)
4. Ballester-Bolinches, A., Cosme-Llopez, E., Rutten, J.: The dual equivalence of equations and coequations for automata. Inform. Comput. 244, 49–75 (2015)
5. Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quantifiers on languages and codensity monads;Mathematical Structures in Computer Science;2020-11
2. Generalized Eilenberg Theorem;ACM Transactions on Computational Logic;2019-02-05