1. E. Inonu and E. P. Wigner, Proc. Natl. Acad. Sci. USA 39, 510 (1953); J. D. Talman, Special Functions, A Group Theoretical Approach Based on Lectures by E. P. Wigner (Benjamin, New York, 1968 ). See also R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications in Physics ( Wiley, New York, 1974 ).
2. E. P. Wigner, Ann. Math. 40, 149 (1939); V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. USA 34, 211 (1946); E. P. Wigner, Z. Phys. 124, 665 (1948); A. S. Wightman, in Dispersion Relations and Elementary Particles, edited by C. De Witt and R. Omnes (Hermann, Paris, 1960); M. Hamer-mesh, Group Theory (Addison-Wesley, Reading, MA, 1962); E. P. Wigner, in Theoretical Physics, edited by A. Salam (IAEA, Vienna, 1962); A. Janner and T. Jenssen, Physics 53, 1 (1971); 60, 292 (1972); J. L. Richard, Nuovo Cimento A 8, 485 (1972); H. P. W. Gottlieb, Proc. R. Soc. London Ser. A 368, 429 (1979); H. van Dam, Y. J. Ng, and L. C. Biedenharn, Phys. Lett. B 158, 227 (1985). For a recent textbook on this subject, see Y. S. Kim and M. E. Noz, Theory and Applications of the Poincaré Group (Reidel, Dordrecht, Holland, 1986 ).
3. E. P. Wigner, Rev. Mod. Phys. 29, 255 (1957). See also D. W. Robinson, HeIv. Phys. Acta 35, 98 (1962)
4. D. Korff, J. Math. Phys. 5, 869 (1964)
5. S. Weinberg, in Lectures on Particles and Field Theory, Brandeis 1964,edited by S. Deser and K. W. Ford (Prentice-Hall, Englewood Cliffs, NJ, 1965) Vol. 2