Abstract
Abstract
Fish processing towards production of fillet gives rise to wastewater streams that are ultimately directed to biogas production and/or wastewater treatment. However, these wastewater streams are rich in minerals, fat, and proteins that can be converted to protein-rich feed ingredients through submerged cultivation of edible filamentous fungi. In this study, the origin of wastewater stream, initial pH, cultivation time, and extent of washing during sieving, were found to influence the amount of recovered material from the wastewater streams and its protein content, following cultivation with Aspergillus oryzae. Through cultivation of the filamentous fungus in sludge, 330 kg of material per ton of COD were recovered by sieving, corresponding to 121 kg protein per ton of COD, while through its cultivation in salt brine, 210 kg of material were recovered per ton of COD, corresponding to 128 kg protein per ton of COD. Removal ranges of 12–43%, 39–92%, and 32–66% for COD, total solids, and nitrogen, respectively, were obtained after A. oryzae growth and harvesting in the wastewater streams. Therefore, the present study shows the versatility that the integration of fungal cultivation provides to fish processing industries, and should be complemented by economic, environmental, and feeding studies, in order to reveal the most promising valorization strategy.
Graphic abstract
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. Pandey A, Höfer R, Larroche C, Taherzadeh MJ, Nampoothiri M. Industrial biorefineries and white biotechnology. Waltham: Elsevier; 2015.
2. Souza Filho PF, Andersson D, Ferreira JA, Taherzadeh MJ. Mycoprotein: environmental impact and health aspects. World J Microbiol Biotechnol. 2019;35:147.
3. Ferreira JA, Lennartsson PR, Edebo L, Taherzadeh MJ. Zygomycetes-based biorefinery: present status and future prospects. Bioresour Technol. 2013;135:523–32.
4. Ferreira JA, Mahboubi A, Lennartsson PR, Taherzadeh MJ. Waste biorefineries using filamentous ascomycetes fungi: present status and future prospects. Bioresour Technol. 2016;215:334–45.
5. FAO. How to feed the world in 2050. Accessed in 2020.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献