Exploring a New Geometric-mechanical Artefact for Calculus

Author:

Maschietto MichelaORCID,Milici PietroORCID

Abstract

AbstractWe introduce a geometric-mechanical artefact designed for laboratory activities related to Calculus topics (3D models and construction instructions are freely available online). With new capabilities and a new design, this instrument adopts some mechanisms historically introduced to solve inverse tangent problems (that analytically correspond to solving differential equations). By such an instrument, besides materially revealing the tangent to a curve (tangent mode), it is possible to trace the graph of exponential functions and parabolas starting from the geometrical properties of their tangent (curvigraph mode). Furthermore, one can perform transformations as derivatives and integrals (transformation mode). Our research project aims to study the use of this artefact mainly for secondary school students. In this paper, we present the analysis of its semiotic potential, referring to the instrumental approach and the Theory of Semiotic Mediation. We also focus on a secondary school teacher manipulating the artefact to identify exploration processes and gestures of usage. The analysis supports the choice of starting the exploration in the tangent mode and suggests that the artefact fosters the emergence of the idea of the tangent line.

Funder

Università degli Studi di Palermo

Publisher

Springer Science and Business Media LLC

Reference58 articles.

1. Abdank-Abakanowicz, B. (1886). Les intégraphes, la courbe intégrale et ses applications. Gauthier-Villars. https://ia800304.us.archive.org/10/items/lesintegraphes18abda/lesintegraphes18abda.pdf. Accessed 15 July 2024.

2. Arzarello, F., & Edwards, L. (2005). Gesture and the construction of mathematical meaning. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th PME conference (Vol. 1, pp. 22–145). Melbourne University. https://www.emis.de/proceedings/PME29/PME29ResearchForums/PME29RFArzarelloEdwards.pdf. Accessed 15 July 2024.

3. Arzarello, F., & Sabena, C. (2011). Semiotic and theoretic control in argumentation and proof activities. Educational Studies in Mathematics, 77(2/3), 189–206. https://doi.org/10.1007/s10649-010-9280-3

4. Bartolini Bussi, M.G., & Maschietto, M. (2008). Machines as tools in teacher education. In D. Tirosh, & T. Wood (Eds.), Tools and processes in mathematics teacher education. The international handbook of mathematics teacher education (Vol. 2, pp. 183–208). Sense Publishers. ISBN: 978–90–8790–544–6.

5. Bartolini Bussi, M. G., Garuti, R., Martignone, F., & Maschietto, M. (2011). Tasks for teachers in the MMLAB-ER Project. In B. Ubuz (Ed.), Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 127–130). PME. https://www.igpme.org/wp-content/uploads/2019/05/PME35-2011-Ankara.zip. Accessed 15 July 2024.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3